Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pain ; 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38452214

RESUMO

ABSTRACT: The pressing need for safer, more efficacious analgesics is felt worldwide. Preclinical tests in animal models of painful conditions represent one of the earliest checkpoints novel therapeutics must negotiate before consideration for human use. Traditionally, the pain status of laboratory animals has been inferred from evoked nociceptive assays that measure their responses to noxious stimuli. The disconnect between how pain is tested in laboratory animals and how it is experienced by humans may in part explain the shortcomings of current pain medications and highlights a need for refinement. Here, we survey human patients with chronic pain who assert that everyday aspects of life, such as cleaning and leaving the house, are affected by their ongoing level of pain. Accordingly, we test the impact of painful conditions on an ethological behavior of mice, digging. Stable digging behavior was observed over time in naive mice of both sexes. By contrast, deficits in digging were seen after acute knee inflammation. The analgesia conferred by meloxicam and gabapentin was compared in the monosodium iodoacetate knee osteoarthritis model, with meloxicam more effectively ameliorating digging deficits, in line with human patients finding meloxicam more effective. Finally, in a visceral pain model, the decrease in digging behavior correlated with the extent of disease. Ultimately, we make a case for adopting ethological assays, such as digging, in studies of pain in laboratory animals, which we believe to be more representative of the human experience of pain and thus valuable in assessing clinical potential of novel analgesics in animals.

3.
Nature ; 607(7918): 330-338, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35794483

RESUMO

Transcriptomics has revealed that cortical inhibitory neurons exhibit a great diversity of fine molecular subtypes1-6, but it is not known whether these subtypes have correspondingly diverse patterns of activity in the living brain. Here we show that inhibitory subtypes in primary visual cortex (V1) have diverse correlates with brain state, which are organized by a single factor: position along the main axis of transcriptomic variation. We combined in vivo two-photon calcium imaging of mouse V1 with a transcriptomic method to identify mRNA for 72 selected genes in ex vivo slices. We classified inhibitory neurons imaged in layers 1-3 into a three-level hierarchy of 5 subclasses, 11 types and 35 subtypes using previously defined transcriptomic clusters3. Responses to visual stimuli differed significantly only between subclasses, with cells in the Sncg subclass uniformly suppressed, and cells in the other subclasses predominantly excited. Modulation by brain state differed at all hierarchical levels but could be largely predicted from the first transcriptomic principal component, which also predicted correlations with simultaneously recorded cells. Inhibitory subtypes that fired more in resting, oscillatory brain states had a smaller fraction of their axonal projections in layer 1, narrower spikes, lower input resistance and weaker adaptation as determined in vitro7, and expressed more inhibitory cholinergic receptors. Subtypes that fired more during arousal had the opposite properties. Thus, a simple principle may largely explain how diverse inhibitory V1 subtypes shape state-dependent cortical processing.


Assuntos
Interneurônios , Inibição Neural , Transcriptoma , Córtex Visual , Animais , Nível de Alerta , Axônios/fisiologia , Cálcio/análise , Interneurônios/fisiologia , Camundongos , Inibição Neural/genética , Receptores Colinérgicos , Transcriptoma/genética , Córtex Visual/citologia , Córtex Visual/metabolismo , Córtex Visual/fisiologia
4.
Elife ; 102021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34845987

RESUMO

Projections from the basal amygdala (BA) to the ventral hippocampus (vH) are proposed to provide information about the rewarding or threatening nature of learned associations to support appropriate goal-directed and anxiety-like behaviour. Such behaviour occurs via the differential activity of multiple, parallel populations of pyramidal neurons in vH that project to distinct downstream targets, but the nature of BA input and how it connects with these populations is unclear. Using channelrhodopsin-2-assisted circuit mapping in mice, we show that BA input to vH consists of both excitatory and inhibitory projections. Excitatory input specifically targets BA- and nucleus accumbens-projecting vH neurons and avoids prefrontal cortex-projecting vH neurons, while inhibitory input preferentially targets BA-projecting neurons. Through this specific connectivity, BA inhibitory projections gate place-value associations by controlling the activity of nucleus accumbens-projecting vH neurons. Our results define a parallel excitatory and inhibitory projection from BA to vH that can support goal-directed behaviour.


Assuntos
Tonsila do Cerebelo/fisiologia , Hipocampo/fisiologia , Aprendizagem/fisiologia , Vias Neurais/fisiologia , Córtex Pré-Frontal/fisiologia , Células Piramidais/fisiologia , Animais , Camundongos , Recompensa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...